首页 | 本学科首页   官方微博 | 高级检索  
     

自适应近邻的局部线性嵌入算法
引用本文:张兴福,黄少滨. 自适应近邻的局部线性嵌入算法[J]. 哈尔滨工程大学学报, 2012, 33(4): 489-495
作者姓名:张兴福  黄少滨
作者单位:1. 哈尔滨工程大学计算机科学与技术学院,黑龙江哈尔滨150001;黑龙江省农垦经济研究所,黑龙江哈尔滨150090
2. 哈尔滨工程大学计算机科学与技术学院,黑龙江哈尔滨,150001
基金项目:国家自然科学基金资助项目
摘    要:在局部线性嵌入算法(LLE)中寻找最优近邻数常用试凑法进行搜索,需要大量的时间才能得到最优结果.为此提出基于自适应近邻的局部线性嵌入算法( ANLLE),算法首先给出一个相似性度量函数,然后据此为各个样本设定阈值,根据每个样本周围数据分布情况,为每个样本自动设置不同近邻数,最后在各个样本近邻数不相同情况下进行数据降维及待测样本的分类.在人脸数据库及手写数字数据库上的对比实验表明,ANLLE算法识别性能高于标准LLE算法及邻域线性嵌入算法(NLE).

关 键 词:局部线性嵌入  自适应近邻  维数约减  嵌入算法  最优近邻  相似性度量函数

Adaptive neighborhoods based locally linear embedding algorithm
ZHANG Xingfu , HUANG Shaobin. Adaptive neighborhoods based locally linear embedding algorithm[J]. Journal of Harbin Engineering University, 2012, 33(4): 489-495
Authors:ZHANG Xingfu    HUANG Shaobin
Abstract:Finding out the optimal neighbors in Locally Linear Embedding algorithm is still an open problem. Trial and error, a commonly used method, needs much time to get the optimal result. We propose Adaptive Neighborhoods based Locally Linear Embedding algorithm (ANLLE), which firstly provides a new similarity measure function. Secondly, the algorithm sets a threshold for each sample, and then sets various neighbors for each sample according to different distribution around it. Finally, ANLLE reduces the dimensionalities of samples and classifies the out-of-samples in the case of different neighbors for each sample. Comparison of ANLLE, Neighborhood Linear Embedding algorithm(NLE) and standard LLE Algorithm in databases proves that ANLLE is more effective than standard LLE algorithm and NLE algorithm.
Keywords:locally linear embedding  Adaptive Neighborhoods  dimensionality reduction
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号