首页 | 本学科首页   官方微博 | 高级检索  
     


Hot Deformation Behavior of Beta Titanium Ti-13V-11Cr-3Al Alloy
Authors:Seyed Mehdi Abbasi  Maryam Morakkabati  Amir Hossein Sheikhali  Amir Momeni
Affiliation:1. Advanced Materials Research Laboratory, Metallic Materials Department, AMR of Technology, Tehran, Iran
2. Department of Materials Science and Engineering, Hamedan University of Technology, Hamedan, Iran
Abstract:Hot compression tests were conducted on Ti-13V-11Cr-3Al beta-Ti alloy in the temperature range of 1203 K to 1353 K (930 °C to 1080 °C) and at strain rates between 0.001 and 1 s?1 The stress–strain curves showed pronounced yield point phenomena at high strain rates and low temperatures. The yield point elongation and flow stresses at the upper and lower yield points were related to the Zener–Hollomon parameter. It was found that dynamic recovery at low strain rates and dynamic recrystallization at high strain rates were the controlling mechanisms of microstructural evolution. The results also showed that strain rate had a stronger influence on the hot deformation behavior than temperature. The microstructural observations and constitutive analysis of flow stress data supported the change in the hot deformation behavior of the studied alloy varies with strain rate. For various applied strain rates, the activation energy for hot deformation was calculated in range of 199.5 to 361.7 kJ/mol. At low strain rates (0.001 and 0.01 s?1), the value of activation energy was very close to the activation energy for the diffusion of V, Cr, and Al in beta titanium. The higher value of activation energy for deformation at high strain rates (0.1 and 1 s?1) was attributed to the accumulation of dislocations and the tendency to initiate dynamic recrystallization.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号