首页 | 本学科首页   官方微博 | 高级检索  
     


Loading Rate-Dependent Mechanical Properties of Bulk Two-Phase Nanocrystalline Al-Pb Alloys Studied by Nanoindentation
Authors:Sreedevi Varam  Koteswararao V Rajulapati  K Bhanu Sankara Rao  Ronald O Scattergood  Korukonda L Murty  Carl C Koch
Affiliation:1. School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
2. Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695-7907, USA
Abstract:Bulk samples (dia. = 20 mm) of various nanocrystalline (nc) Al-Pb alloys with Pb content varying from 1 to 4 at. pct are fabricated using spark plasma sintering of ball-milled powders. Al matrix in Al-2 at. pct Pb alloy had a grain size of 53 nm, and Pb particle size was 6 ± 2 nm. High angle annular dark-field image obtained in STEM mode of TEM indicates the presence of Pb along the nc Al grain boundaries as well as dispersion of smaller Pb particles in the intra-granular regions. Hardness studies are carried out using microindentation and nanoindentation with load varying over three orders of magnitude (100 ? 0.1 g). Microindentation yielded slightly smaller hardness values in comparison to nanoindentation possibly because of indentation size effect. Nevertheless both microindentation and nanoindentation resulted in the same trend of hardness for various nc Al-Pb alloys. Hardness of Al-Pb alloys increased with increase in Pb content up to the additions of 2 at. pct Pb, beyond that the hardness is decreased for higher Pb additions of 3 and 4 pct. The initial hardening behavior is explained based on the Orowan particle strengthening. Strain rate sensitivity (SRS) has increased with increase in Pb content reaching a value of 0.1 for Al-4 at. pct Pb alloy. Activation volumes measured are between 2.84 and 6.15 b 3. Higher SRS and lower activation volume suggest that grain boundary-mediated processes are controlling the deformation characteristics.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号