首页 | 本学科首页   官方微博 | 高级检索  
     

塑性碰撞机械振动系统的周期运动和分岔
引用本文:罗冠炜,褚衍东,朱喜峰,谢建华. 塑性碰撞机械振动系统的周期运动和分岔[J]. 机械工程学报, 2006, 42(10): 10-18
作者姓名:罗冠炜  褚衍东  朱喜峰  谢建华
作者单位:兰州交通大学机电工程学院;兰州交通大学数理与软件工程学院;西南交通大学应用力学与工程系
基金项目:国家自然科学基金;教育部科学技术研究重点项目
摘    要:应用映射的分岔理论研究塑性碰撞机械振动系统特有的两类周期碰撞运动的存在性、分岔和碰撞映射的奇异性,分析两类周期碰撞运动的规律和转迁过程。塑性碰撞振动系统的Poincaré映射具有分段不连续特性和擦边奇异性。塑性碰撞振动系统的部件在碰撞后呈现“粘贴”或“非粘贴”运动,导致该类系统的Poincaré映射具有分段不连续性;碰撞部件的擦边接触导致系统的Poincaré映射具有擦边奇异性。塑性碰撞振动系统Poincaré映射的分段不连续特性和擦边奇异性导致该类系统的周期碰撞运动发生非常规分岔。描述分段不连续性和擦边接触奇异性对系统周期运动和全局分岔的影响,分析塑性碰撞振动系统混沌运动的形成与退出过程。

关 键 词:Grazing 分岔  Sliding 分岔  冲击  振动  周期运动  
修稿时间:2005-12-25

PERIODIC MOTIONS AND BIFURCATIONS OF VIBRATORY SYSTEMS WITH PLASTIC IMPACTS REPEATED
LUO Guanwei,CHU Yandong,ZHU Xifeng,XIE Jianhua. PERIODIC MOTIONS AND BIFURCATIONS OF VIBRATORY SYSTEMS WITH PLASTIC IMPACTS REPEATED[J]. Chinese Journal of Mechanical Engineering, 2006, 42(10): 10-18
Authors:LUO Guanwei  CHU Yandong  ZHU Xifeng  XIE Jianhua
Affiliation:School of Mechatronic Engineering, Lanzhou Jiaotong University School of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University Department of Applied Mechanics and Engineering, Southwest Jiaotong University
Abstract:Vibratory systems with repeated impacts are considered. Dynamics of such systems, in inelastic impact cases, are studied with special attention to existence of two different types of periodic-impact motions, bifurcations and singularity by applying bifurcation theory of mapping. Regularity and transition of two types of periodic-impact motions are studied by use of a mapping derived from the equations of motion. The mapping of vibratory systems with repeated inelastic impacts is of piecewise property due to synchronous and non-synchronous motions of impact components immediately after the impact, and singularities caused by the grazing contact motions of impact components. The piecewise property and grazing singularity of Poincare mapping of such systems lead to non-standard bifurcations of periodic-impact motions. The influence of the piecewise property and singularities on global bifurcations and transitions to chaos is elucidated. The routes from periodic-impact motions to chaos are analyzed by numerical analyses.
Keywords:Vibration Impact Periodic motion Sliding bifurcation Grazing bifurcation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《机械工程学报》浏览原始摘要信息
点击此处可从《机械工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号