Performance enhancement and load reduction of a 5 MW wind turbine blade |
| |
Affiliation: | 1. Departamento de Ingeniería Rural y Agroalimentaria, Universidad Politécnica de Valencia, Camino de Vera, s/n. 46022 Valencia, Spain;2. Departamento de Producción Vegetal, Universidad Politécnica de Valencia, Camino de Vera, s/n. 46022 Valencia, Spain;3. Departamento de Ingeniería Cartográfica, Geodesia y Fotogrametría, Universidad Politécnica de Valencia, Camino de Vera, s/n. 46022 Valencia, Spain;1. Servo Control Engineering Center of Education Ministry, Southeast University, Nanjing 210096, China;2. Department of Electronic and Electrical Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK;1. Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark;2. Mali Folkecenter, Faladié, SEMA, Rue 800, Porte 1293, Bamako, Mali;1. Department of Signal Processing and Communications, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain;2. Isdefe, Department of Renewable Energy, National Institute of Aerospace Technology (INTA), Madrid, Spain;3. Department of Renewable Energy, National Institute for Aerospace Technology (INTA), Madrid, Spain |
| |
Abstract: | A wind turbine rotor blade, based on the U.S. National Renewable Energy Laboratory (NREL) 5 MW reference turbine, is optimized for minimum cost of energy through simultaneous consideration of aerodynamics and bend-twist coupling. Eighty-three total design variables are considered, encompassing airfoil shapes, chord and twist distributions, and the degree of bend-twist coupling in the blade. A recently developed method requiring significantly less computation than finite element analysis is used for planning and predicting the bend-twist coupling behavior of the rotor. Airfoil performance is computed using XFOIL, while the wind turbine loads and performance are computed using the NREL FAST code. The objective function is annual cost of energy (COE), where reductions in flapwise bending loads and blade surface area are assumed to decrease rotor cost through reduced material requirements. The developed optimization process projects decreased blade loads while maintaining wind turbine performance. |
| |
Keywords: | Wind turbine Optimization Aero-structural optimization Bend-twist coupling |
本文献已被 ScienceDirect 等数据库收录! |
|