首页 | 本学科首页   官方微博 | 高级检索  
     


Study on dimensional and corrosion properties of thixoformed A356 and AA7075 aluminum bipolar plates for proton exchange membrane fuel cells
Affiliation:1. Materials and Electro-Optics Research Division, National Chung-Shan Institute of Science and Technology, Tao-Yuan 325, Taiwan;2. Department of Physics, R.O.C. Military Academy, Kaohsiung 830, Taiwan;3. School of Defense Science, Chemical Systems Research Division, National Chung-Shan Institute of Science and Technology, Tao-Yuan 3235, Taiwan;4. Department of Power Vehicles and System Engineering, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan 335, Taiwan;5. Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan 335, Taiwan
Abstract:Metallic bipolar plates for polymer exchange membrane (PEM) fuel cells are currently manufactured by stamping of thin sheets. However, there are dimensional and shape errors of microchannels because of forming limitation such as spring back of thin sheets after stamping. On the other hand, stamping process is limited to commercially available sheet alloys, which restricts the development of a high corrosion resistant substrate aluminum alloy. Here, thixoforming (a commercial semisolid route) that is applicable to a wide range of aluminum alloys is proposed for net-shape micromanufacturing of aluminum bipolar plates with high dimensional stability. High corrosion resistance cast A356 (Cu-free) and wrought AA7075 (∼2% Cu) aluminum billets are used for this study. Initial billets are heated at different semisolid temperatures. Subsequently, the semisolid slurries are injected into the die cavity. A356 and AA7075 aluminum bipolar plates are successfully fabricated by thixoforming with very small deviation of 0.7% and 1.5% from the nominal value of 0.300 mm in the microchannel depth, respectively. A multilayer coating of TiN/CrN is deposited on the surface of thixoformed bipolar plates through a commercially available magnetron sputtering technique. Electrochemical corrosion tests show that coated-thixoformed A356 (Cu-free) bipolar plates have significantly lower corrosion current densities than coated-thixoformed AA7075 (∼2% Cu) bipolar plates. This seems to be due to the deleterious effect of Cu alloying element on the corrosion resistance of aluminum alloys that clearly confirms the importance of substrate material development for corrosive PEM fuel cell environment. It is suggested that specific high corrosion resistance aluminum alloy for PEM fuel cell application can be simply designed and then thixoforming can be efficiently and cost effectively employed to fabricate net-shape aluminum bipolar plates.
Keywords:Aluminum bipolar plate  Dimensional stability  Corrosion property
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号