首页 | 本学科首页   官方微博 | 高级检索  
     


Climate change mitigation with integration of renewable energy resources in the electricity grid of New South Wales,Australia
Affiliation:1. University of Alaska Anchorage, Anchorage, AK, USA;2. Mechanical Engineering Dept., Ohio University, Athens, OH, USA;3. Civil Engineering Dept., University of Alaska Anchorage, Anchorage, AK, USA;4. Electrical Engineering Dept., University of Alaska Anchorage, Anchorage, AK, USA;5. Mechanical Engineering Dept., University of Alaska Anchorage, Anchorage, AK, USA;1. Institut UTINAM UMR CNRS 6213, Université de Franche-Comté, UFR Sciences et Techniques, 16 Route de Gray, 25030 Besançon Cédex, France;2. Solaronix SA, 129, rue de l''Ouriette, 1170 Aubonne, Switzerland;1. Department of Electrical and Electronic Engineering, Public University of Navarra, Pamplona 31006, Spain;2. Department of PV Solar Energy, Ingeteam Power Technology, Sarriguren 31621, Spain;1. Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA;2. California Institute for Energy and Environment, University of California-Berkeley, Berkeley, CA, USA;1. College of Mechanical Engineering, Chongqing University, Chongqing 400044, China;2. College of Economics and Management, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;3. Weichai Power Co., Ltd., WeiFang 261041, China
Abstract:The implementation of climate change mitigation strategies may significantly affect the current practices for electricity network operation. Increasing penetration of renewable energy generation technologies into electricity networks is one of the key mitigation strategies to achieve greenhouse gas emission reduction targets. Additional climate change mitigation strategies can also contribute to emission reduction thereby supplementing the renewable energy generation participation, which may be limited due to technical constraints of the network. In this paper, the penetration requirements for different renewable energy generation resources are assessed while concurrently examining other mitigation strategies to reduce overall emissions from electricity networks and meet requisite targets. The impacts of climate change mitigation strategies on the demand and generation mix are considered for facilitating the penetration of renewable generation. New climate change mitigation indices namely change in average demand, change in peak demand, generation flexibility and generation mix have been proposed to measure the level of emission reduction by incorporating different mitigation strategies. The marginal emissions associated with the individual generation technologies in the state of New South Wales (NSW) are modelled and the total emissions associated with the electricity grid of NSW are evaluated.
Keywords:Climate change mitigation  Emission reduction  Performance indices  Renewable energy penetration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号