首页 | 本学科首页   官方微博 | 高级检索  
     


Facile synthesis and microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere
Affiliation:1. Department of Applied Physics, Northwestern Polytechnical University, Xi''an, PR China;2. Center of Nanomaterials for Renewable Energy (CNRE), State Key Lab of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi''an Jiaotong University, Xi''an, PR China
Abstract:We reported the preparation of C@Ni–NiO core–shell hybrid solid spheres or multi-shelled NiO hollow spheres by combining a facile hydrothermal route with a calcination process in H2 or air atmosphere, respectively. The synthesized C@Ni–NiO core–shell solid spheres with diameters of approximately 2–6 μm were in fact built from dense NiO nanoparticles coated by random two-dimensional metal Ni nanosheets without any visible pores. The multi-shelled NiO hollow spheres were built from particle-like ligaments and there are a lot of pores with size of several nanometers on the surface. Combined Raman spectra with X-ray photoelectron spectra (XPS), it suggested that the defects in the samples play a limited role in the dielectric loss. Compared with the other samples, the permeability of the samples calcined in H2 and air was increased slightly and the natural resonance frequency shifted to higher frequency (7, 11 and 14 GHz, respectively), leading to an enhancement of microwave absorption property. For the sample calcined in H2, an optimal reflection loss less than − 10 was obtained at 7 GHz with a matching thickness of 5.0 mm. Our study demonstrated the potential application of C@Ni–NiO core–shell hybrid solid sphere or multi-shelled NiO hollow sphere as a more efficient electromagnetic (EM) wave absorber.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号