首页 | 本学科首页   官方微博 | 高级检索  
     

单晶Ge纳米薄膜面向热导率的分子动力学模拟
引用本文:张兴丽,吴国强.单晶Ge纳米薄膜面向热导率的分子动力学模拟[J].稀有金属材料与工程,2015,44(3):656-659.
作者姓名:张兴丽  吴国强
作者单位:东北林业大学;大连理工大学
基金项目:中央高校基本科研业务费专项资金项目(DL12BB38)
摘    要:利用非平衡分子动力学模拟方法研究了单晶Ge薄膜的厚度以及温度对其面向热导率的影响规律。针对单晶Ge薄膜的结构特点和导热机制,采用Stillinger-Weber势能模型描述Ge粒子间的相互作用,并且建立面向稳态热传导模型。模拟结果显示,单晶Ge薄膜面向热导率具有明显尺寸效应,随薄膜厚度的增加而增大,随温度的升高而减小。与法向热导率的模拟结果进行比较,证明单晶Ge薄膜热导率具有各向异性的特点。

关 键 词:面向热导率  单晶Ge薄膜  分子动力学
收稿时间:2014/3/15 0:00:00

Molecular Dynamics Simulation of In-Plane Thermal Conductivity for Ge Single-Crystal Thin Films
Zhang Xingli and Wu Guoqiang.Molecular Dynamics Simulation of In-Plane Thermal Conductivity for Ge Single-Crystal Thin Films[J].Rare Metal Materials and Engineering,2015,44(3):656-659.
Authors:Zhang Xingli and Wu Guoqiang
Affiliation:Northeast Forestry University, Harbin 150040, China and Dalian University of Technology, Dalian 116024, China
Abstract:The effects of thickness and temperature on the in-plane thermal conductivities of germanium single-crystal thin films have been investigated by a non-equilibrium molecular dynamics (NEMD) simulation method. The Stillinger-Weber potential model was employed to describe the interaction between atoms in the germanium single-crystal thin films. Taking structural characteristics and heat transfer mechanism of the germanium single-crystal thin films, a steady heat transfer model was framed. The results of calculations demonstrate that the in-plane thermal conductivities of germanium single-crystal thin films show an obvious size effect, which increases with increasing of thin film thickness and decreases with increasing of temperature. Comparing with the cross-plane thermal conductivity, the simulation results prove that the thermal conductivities of germanium single-crystal thin films have anisotropic characteristics.
Keywords:in-plane thermal conductivities  germanium single-crystal thin films  molecular dynamics simulation
本文献已被 CNKI 等数据库收录!
点击此处可从《稀有金属材料与工程》浏览原始摘要信息
点击此处可从《稀有金属材料与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号