首页 | 本学科首页   官方微博 | 高级检索  
     


Skyline index for time series data
Authors:Li   Q. Moon   B. Lopez   I.F.V.
Affiliation:Dept. of Comput. Sci., Arizona Univ., Tucson, AZ, USA;
Abstract:We have developed a new indexing strategy that helps overcome the curse of dimensionality for time series data. Our proposed approach, called skyline index, adopts new skyline bounding regions (SBR) to approximate and represent a group of time series data according to their collective shape. Skyline bounding regions allow us to define a distance function that tightly lower bounds the distance between a query and a group of time series data. In an extensive performance study, we investigate the impact of different distance functions by various dimensionality reduction and indexing techniques on the performance of similarity search, including index pages accessed, data objects fetched, and overall query processing time. In addition, we show that, for k-nearest neighbor queries, the proposed skyline index approach can be coupled with the state of the art dimensionality reduction techniques such as adaptive piecewise constant approximation (APCA) and improve its performance by up to a factor of 3.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号