首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波包分解的 SAR图像压缩 *
引用本文:王爱丽,张晔,杨明极. 基于小波包分解的 SAR图像压缩 *[J]. 计算机应用研究, 2008, 25(10): 3063-3065
作者姓名:王爱丽  张晔  杨明极
作者单位:1. 哈尔滨理工大学,测控技术与通信工程学院,哈尔滨,150040
2. 哈尔滨工业大学,信息工程系,哈尔滨,150001
基金项目:国家自然科学基金资助项目 ( 60472048, 60402025 ) ;哈尔滨理工大学青年科学基金资助项目 ( 2008XQJZ023)
摘    要:针对 SAR图像含有丰富的中、高频信息 ,而基于小波变换的图像压缩方法会丢失高频细节信息 ,提出了基于小波包分解的 SAR图像编码算法。小波包变换对 SAR图像进行完全分解 ,再用与后续编码器相关联的代价函数进行最佳基搜索 ,然后根据各子带小波包系数的重要性进行加权 ,采用多级树集合分裂算法 ( SPIHT)编码。实验结果表明 ,该算法更好地保留了 SAR图像的细节信息 ,获得了同压缩比下优于传统 SPIHT算法的编码性能 ,更有利于后续图像处理。

关 键 词:图像压缩   小波包变换   最佳基选择   多级树集合分裂算法

SAR image compression based on wavelet packet transform
WANG Ai-li,ZHANG Ye,YANG Ming-ji. SAR image compression based on wavelet packet transform[J]. Application Research of Computers, 2008, 25(10): 3063-3065
Authors:WANG Ai-li  ZHANG Ye  YANG Ming-ji
Affiliation:( 1. School of Measurement-Control Tech Communications Engineering, Harbin University of Science & Technology, Harbin 150040, China; 2. Dept. of Information Engineering, Harbin Institute of Technology, Harbin 150001, China)
Abstract:In order to improve the compression efficiency of texture-rich synthetic aperture radar( SAR) images, this paper proposed wavelet packet decomposition based coding method to exploit middle and high frequency components. Firstly, applied wavelet packet transform to SAR images for a full decomposition, and then utilized a cost function related with the sequential coding scheme for best basis selection to improve the representation efficiency of SAR images. At last, weighted and coded wavelet packet coefficients in different subbands according to importance by set partitioning in hierarchical trees ( SPIHT) al-gorithm. The experimental results show that the proposed coding method using wavelet packet transform compares favorably with the conventional wavelet-based SPIHT compression methods and keeps more texture information improving interpretability performance for further SAR image processing.
Keywords:image compression   wavelet packet transform   best basis selection   set partitioning in hierarchical trees( SPIHT)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号