首页 | 本学科首页   官方微博 | 高级检索  
     


Voronoi cell finite element model based on micropolar theory of thermoelasticity for heterogeneous materials
Authors:Somnath Ghosh  Yunshan Liu
Abstract:In this paper, a new ‘Voronoi cell finite element model’ is developed for solving steady-state heat conduction and micropolar thermoelastic stress analysis problems in arbitrary heterogeneous materials. The method is based on the natural discretization of a multiple phase domain into basic structural elements by Dirichlet Tessellation. Tessellation process results in a network of polygons called Voronoi polygons. In this paper, formulations are developed for treating these polygons as elements in a finite element mesh. Furthermore, a composite Voronoi cell finite element model is developed to account for the presence of a second phase inclusion within a polygonal element. Various numerical examples are executed for validating the effectiveness of this model in the analysis of the temperature and stress fields for micropolar elastic materials. Effective material properties are derived for microstructures containing different distributions of second phase.
Keywords:Voronoi cell  finite element  thermoelasticity  micropolar  heterogeneous
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号