首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructural and mechanical characterization of laser-beam welding of a 8090 Al-Li thin sheet
Authors:M F Lee  J C Huang  N J Ho
Affiliation:(1) Institute of Materials Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
Abstract:In extension to a previous study on electron-beam welding (EBW) under vacuum on a 8090 thin sheet, the current paper reports the parallel results of laser-beam welding (LBW) of the same material. Autogenous ldquobead-on-platerdquo laser-beam welding was performed by a 3 kW CO2 LBW machine. The power of the input laser beam, the specimen moving speed, and the focusing condition was varied from 700 to 1300 W, 1500 to 9000 mm min–1 and 1 to 3 mm below the specimen top surface, respectively. The protection atmosphere and plasma jet were achieved by blowing either Ar or N2 gas. The effects of using different gases were evaluated in terms of weld-line appearance, fusion-zone dimension, solute evaporation, microhardness, post-weld tensile properties, as well as porosity distribution. In comparing with the EBW results, LBW on the 8090 alloy was characterized with a higher fusion-zone depth/width ratio, cooling rate and porosity amount, and a lower solute loss and post-weld tensile strain. The primary formation mechanism for porosity was thought to be related to the collapsed key-holes during LBW under Ar or N2 and the hydride-induced gas pores during EBW under vacuum.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号