首页 | 本学科首页   官方微博 | 高级检索  
     


An ethanolic-aqueous extract of Curcuma longa decreases the susceptibility of liver microsomes and mitochondria to lipid peroxidation in atherosclerotic rabbits
Authors:JL Quiles  C Aguilera  MD Mesa  MC Ramírez-Tortosa  L Baró  A Gil
Affiliation:Laboratory for Microbiology, Faculty of Biology, University of Belgrade, Studentski trg 3, 11000 Belgrade, Yugoslavia. esimicd@ubbg.etf.bg.ac.yu
Abstract:Escherichia coli K12 assay-system is designed in order to detect bioantimutagens, agents preventing mutagenesis by modulation of DNA repair and replication. The assay is composed of four tests aimed at the detection of inhibition of spontaneous and induced mutations (Tests A and B) and at the estimation whether the anti-mutagenic agent acts by increasing the fidelity of DNA replication (Test B), by inhibition of SOS error prone repair (Test C), or by favoring error-free recombinational repair (Test D). In Test A, repair proficient strain and its uvrA counterpart are used for detection of spontaneous and UV-induced mutations, while in Test B mismatch repair deficient strains (mutH, mutS, mutL and uvrD) are used for amplified detection of spontaneous mutations caused by replication errors. In Test C, repair proficient strain carrying sfiA::lacZ fusion is used for measuring the level of SOS induction by monitoring the level of beta-galactosidase. In Test D, the strains carrying different recA alleles (recA+, recA730 and DeltarecA) are used for measuring intrachromosomal recombination between nonoverlapping deletions in duplicated lac operon, by monitoring Lac+ recombinants. The assay-system is validated with model bioantimutagens and used for detection of anti-mutagenic potential of different terpenoid fractions from sage (Salvia officinalis L.). Extract E1/3 of cultivated sage, distinguished from others by its high content of monoterpenoid camphor, reduces UV-induced mutagenesis in Test A, while it has no effect in Tests B and C. In Test D, it enhances intrachromosomal recombination in untreated and UV-irradiated recA+ and recA730 strains. The results suggest that the protective effect is due to stimulation of recombinational repair, similarly to coumarin. We speculate that monoterpenoids from sage enhance genetic recombination by intervening in a formation of RecA-DNA complex and channeling it into recombination reaction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号