首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒度分布评估与优化的制粒过程 PSO-BP 控制算法
引用本文:李勇, 吴敏, 曹卫华, 赖旭芝, 王春生. 基于粒度分布评估与优化的制粒过程 PSO-BP 控制算法. 自动化学报, 2012, 38(6): 1007-1016. doi: 10.3724/SP.J.1004.2012.01007
作者姓名:李勇  吴敏  曹卫华  赖旭芝  王春生
作者单位:1.中南大学信息科学与工程学院 长沙 410083;;;2.先进控制与智能自动化湖南省工程实验室 长沙 410083
基金项目:国家高技术研究发展计划(863计划)(2009AA04Z157)资助~~
摘    要:针对钢铁烧结中混合料粒度分布无法在线测量、难以实现混合制粒过程优化控制的问题,提出基于 粒度分布评估函数(Evaluation model of granularity distribution, EMGD)的混合制粒优化控制算法. 首先,根据烧结生产历史数据和混合料筛分实验数据建立粒度分布BP神经网络(BP neural network, BPNN)评估模型; 然后,以该模型为目标函数,以制粒过程状态参数的边界为约束条件,采用粒子群算法(Particle swarms optimization, PSO)计算粒度分布优化值; 最后建立基于BPNN的制粒水分设定模型,根据粒度分布优化值和当前配重实现水分优化控制. 仿真实验和工业应用表明评估模型真实反映了粒度分布对料层透气性的影响; PSO-BP粒度分布优 化控制算法对改善透气性、减少燃料损耗、稳顺烧结生产具有重要意义.

关 键 词:烧结混合制粒   粒度分布评估函数   BP神经网络   粒子群算法
收稿时间:2011-05-06
修稿时间:2012-03-20
本文献已被 CNKI 等数据库收录!
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号