首页 | 本学科首页   官方微博 | 高级检索  
     


Optimal precoding for orthogonalized spatial multiplexing in closed-loop MIMO systems
Abstract:In this paper, we propose a new precoding algorithm for orthogonalized spatial multiplexing (OSM) systems over flat-fading multiple-input multiple-output (MIMO) channels. The OSM scheme was recently introduced for closed-loop MIMO systems which allows single symbol decodable maximum likelihood detection. To further improve the performance of the OSM system, we propose a new precoding method by maximizing the minimum Euclidean distance between constellation points in the effective channel. In order to efficiently identify the parameters of a precoder which maximizes the minimum distance, we introduce a partitioning approach. Through analysis, it is shown that one real value parameter and two bits are required for feedback information for precoding in 16-QAM systems. Simulation results demonstrate that our algorithm provides 9 dB and 7.5 dB gains at a bit error rate (BER) of 10-4 over the conventional OSM systems for 4-QAM and 16-QAM, respectively. We also confirm that the performance of the proposed scheme is the same as that of the optimum closed-loop MIMO systems in terms of the minimum distance. Consequently, our precoding algorithm significantly improves the system performance with a small increase of feedback amount.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号