首页 | 本学科首页   官方微博 | 高级检索  
     


Frictional Pressure Drop for NaK-N2 Two-Phase Flow in Rectangular Cross Section Channel of Large Aspect Ratio
Abstract:In this paper, the frictional pressure drop in an isothermal liquid metal-gas two-phase flow through a rectangular channel with large width-to-height ratio is treated semiempirically for a NaK-N2 two-phase flow system.

The frictional pressure drop in the two-phase flow is compared with the following two reference values :

1. The frictional pressure drop in the liquid flowing alone in single phase with the same velocity as that of the liquid in the two-phase mixture.

2. The frictional pressure drop in the liquid flowing alone in single phase with the same mass flow rate as that of the liquid in the two-phase mixture.

The comparison with the former reference value is necessary for the prediction of friction loss in a liquid metal MHD generator channel whose medium would be two-phase mixture.

The semiempirical analysis was performed assuming the two-phase mixture to be a continuous medium with its properties, e.g. viscosity and density, defined by void fraction and the velocity determined by the total mass flow rate.

In the region of low slip and density ratio ρgl the frictional pressure drop in the two-phase flow appeared to be smaller than that due to the liquid flowing alone with the same velocity as that of the liquid in the two-phase flow.

The experiments have been undertaken with the NaK-N2 two-phase mixture flowing through a rectangular channel (4 × 60 mm2).

Data were taken over the following parameter range:

NaK velocity: 5~30 m/sec, Void fraction: 0~70%

Density ratio: 0.006~0.013, Quality: 0.07~1.10%.
Keywords:NaK-N2  frictional pressure drop  two-phase flow  liquid metal  friction factor  wall shear stress  americium 241  gamma ray attenuation  gas flow  liquid flow  flow rates  MHD generators (liquid metal)  electrical conductivity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号