首页 | 本学科首页   官方微博 | 高级检索  
     


Behavior of a Single Bubble in Quiescent and Flowing Liquid inside a Cylindrical Tube
Abstract:The velocity of a single bubble in quiescent and flowing liquid was studied to gain information on the structure of bubble- and slug-flows of gas-liquid two-phase flow.

In the experiments, tap water was used at room temperature and the bubbles were generated by injecting air with a syringe. The bubble velocities were evaluated from photographs taken by multiflash exposure. The tube diameters adopted were 5, 1 and 0.5 cm for the flowing liquid experiments and 1, 0.5 and 0.2 cm for the quiescent liquid experiments. The average liquid velocities varied from about 0 to 2 m/sec.

The results indicated that the velocity of a single bubble in flowing liquid was the sum of the local liquid velocity in the vicinity of the bubble and of the velocity of rise of bubble in quiescent liquid. For Taylor bubbles, the local liquid velocity is given by the maximum liquid velocity near the center of the channel.

The velocities of spherical and ellipsoidal bubbles are determined by the balance of forces acting on them, but that of the Taylor bubble appears to be determined by a different mechanism. A good explanation of such a mechanism is Taylor instability at the gas-liquid interface well removed from the channel wall.
Keywords:spherical bubble  ellipsoidal bubble  Taylor bubble  acceleration effect  bubble position  velocity distribution  free rise velocity  Taylor instability  turbulence promoter  two-phase flow
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号