首页 | 本学科首页   官方微博 | 高级检索  
     


Whole Core Calculations of Power Reactors by Use of Monte Carlo Method
Abstract:Abstract

Whole core calculations have been performed for a commercial size PWR and a prototype LMFBR by using vectorized Monte Carlo codes. Geometries of cores were precisely represented in a pin by pin model. The calculated parameters were k eff, control rod worth, power distribution and so on. Both multigroup and continuous energy models were used and the accuracy of multigroup approximation was evaluated through the comparison of both results. One million neutron histories were tracked to considerably reduce variances. It was demonstrated that the high speed vectorized codes could calculate k eff, assembly power and some reactivity worths within practical computation time. For pin power and small reactivity worth calculations, the order of 10 million histories would be necessary. It would be difficult for the conventional scalar code to solve such large scale problems while the present codes consumed computation time less than 30 min for a PWR and 1 hour for an LMFBR. Required number of histories to achieve target design accuracy were estimated for those neutronic parameters.
Keywords:Monte Carlo method  multigroup model  continuous energy model  whole core  neutronics calculation  PWR type reactors  LMFBR type reactors  control rod worth  reactivity worth  power distribution  variance  accuracy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号