首页 | 本学科首页   官方微博 | 高级检索  
     


Anomalous Isotope Fractionation in Uranium Enrichment Process
Abstract:A benchmark calculation for a deep penetration problem of 14 MeV neutrons through a 3m thick iron slab was carried out by using a vectorized continuous energy Monte Carlo code MVP with the JENDL-3 and ENDF/B-IV cross sections. Reference solutions for neutron spectra and averaged cross sections were obtained at various locations through the iron slab with good statistics owing to a high computation speed of the code. The accuracy of multigroup calculations with the JSSTDL/J3 library was investigated by comparison with the obtained reference solutions.

Both calculations with JENDL-3 and ENDF/B-IV showed a similar attenuation of total fluxes from thermal to 14 MeV through the slab, while differences of one order at the maximum were observed in the calculated fluxes in the resonance energy region. The multigroup calculations with the JSSTDL/J3 295- and 125-group libraries underestimate the streaming effect through the cross section minima above the well-known 24 keV window, which resulted in the underestimation of fluxes above this window by more than two decades at 3 m penetration compared with the continuous energy method. Taking into account the spatial dependence of averaged cross sections, the underestimation was reduced to about one decade. It was found, however, that an accurate prediction of streaming effect is fairly difficult by the multigroup method.
Keywords:uranium enrichment  uranium 234  uranium 235  uranium 238  chemical exchange  uranium ions  ion exchange  mass difference  mass dependence  isotope separation  isotope ratio
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号