首页 | 本学科首页   官方微博 | 高级检索  
     

线性合成的双粒度 RNN 集成系统
引用本文:张亮, 黄曙光, 胡荣贵. 线性合成的双粒度 RNN 集成系统. 自动化学报, 2011, 37(11): 1402-1406. doi: 10.3724/SP.J.1004.2011.01402
作者姓名:张亮  黄曙光  胡荣贵
作者单位:1.电子工程学院 合肥 230037
摘    要:针对脱机文字识别,提出了一种基于线性合成的双粒度递归神经网络(Recurrent neural net work, RNN)集成系统.首先,使用单词RNN对未知图 像进行识别;然后,依据识别结果进行字符分割,使用字符RNN对分割后的字符进行识别,并利用查表法计算字符的后验概率;最后,综合两个RNN的识别结果决定最终单词输出.在CAPTCHA识别 和手写识别上的实验结果证明了该系统的有效性.

关 键 词:脱机文字识别   递归神经网络   集成系统   字符分割
收稿时间:2011-01-06
修稿时间:2011-07-08

Ensemble System of Double Granularity RNN by Linear Combination
ZHANG Liang, HUANG Shu-Guang, HU Rong-Gui. Ensemble System of Double Granularity RNN by Linear Combination. ACTA AUTOMATICA SINICA, 2011, 37(11): 1402-1406. doi: 10.3724/SP.J.1004.2011.01402
Authors:ZHANG Liang  HUANG Shu-Guang  HU Rong-Gui
Affiliation:1. Electronic Engineering Institute, Hefei 230037
Abstract:For offline text recognition, an ensemble system of double granularity RNN (recurrent neural network) by linear combination is proposed. Firstly, the unknown image is recognized by a word RNN. Secondly, based on the recognition result, connected characters are segmented, and then recognized by a character RNN. Characters' posterior probabilities are calculated by a table-looking method. Finally, the final output is decided by combining both RNNs' results. Experiment results based on CAPTCHA (completely automated public Turing test to tell computers and humans apart) recognition and handwritten recognition proved the effectiveness of this ensemble system.
Keywords:Offline text recognition  recurrent neural network (RNN)  ensemble system  character segmentation
本文献已被 CNKI 等数据库收录!
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号