首页 | 本学科首页   官方微博 | 高级检索  
     


Non-linear three-dimensional finite element analysis of a cementless hip endoprosthesis
Authors:H M Tensi  H Gese  R Ascherl
Abstract:In this finite element study the stresses between a stem component of a cementless hip endoprosthesis (Young modulus of Co-Cr-Mo) and the human femur were calculated for two different loading types. Linear and non-linear models were used to simulate the interface implant bone. Two models, a stem with a porous coated surface over the entire length and a stem with a porous coated surface in the proximal region were compared regarding the load transmission to the femur. An additional calculation of an 'isoelastic' stem (Young modulus of cortical bone) was done to show the influence of the stem stiffness. A porous coated surface over the entire length causes principal shear stresses up to 2.75 MPa in the distal-medial region during level walking. The highest compressive stresses were calculated in the proximal-lateral region as 1.5 MPa in cancellous bone. A more physiological load transmission is obtained by limiting the coated area to the proximal region. All stresses in the two models are lower than experimentally evaluated strengths in the interface between implant and bone. A strong influence of the Young modulus of the stem material on the interface stresses was found. An 'isoelastic' stem causes compressive stresses in the proximal-lateral region whose values exceed the experimental strength of cancellous bone.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号