首页 | 本学科首页   官方微博 | 高级检索  
     


X-ray fluorescence investigation of the Ga distribution in Cu(In,Ga)Se2 thin films
Authors:V Alberts  M Klenk  E Bucher
Affiliation:a Department of Physics, Rand Afrikaans University, PO Box 524, Johannesburg, South Africa;b Department of Physics, University of Konstanz, PO Box X916, D-78457 Konstanz, Germany
Abstract:The efficiencies of Cu(In,Ga)Se2/CdS/ZnO solar cell devices in which the absorbers are produced by classical two-step processes are significantly lower that those in which co-evaporated absorbers are used. A significant problem related to two-step growth processes is the reported segregation of Ga towards the Mo back contact, resulting in separate CuInSe2 and CuGaSe2 phases. Furthermore, it is often reported that material losses (especially In and Ga) occur during high-temperature selenization of metallic precursors. In this study, X-ray fluorescence (XRF) analysis was used to study the diffusion behaviour of the chalcopyrite elements in single-stage and two-stage processed Cu(In,Ga)Se2 thin films. This relatively simple characterization technique proved to be very reliable in determining the degree of selenium incorporation, possible material losses and the in-depth compositional uniformity of samples at different stages of processing. This information is especially important in the case of two-stage growth processes, involving high-temperature selenization steps of metallic precursors. Device quality Cu(In,Ga)Se2 thin films were prepared by a relatively simple and reproducible two-step growth process in which all the metals were evaporated from one single crucible in a selenium-containing environment. The precursors were finally treated in an H2Se/Ar atmosphere to produce fully reacted films. XRF measurement indicated no loss of In or Ga during this final selenization step, but a significant degree of element diffusion which depended on the reaction temperature. It was also possible to produce Cu(In,Ga)Se2 thin films with an appreciable amount of Ga in the near-surface region without separated CuInSe2 and CuGaSe2 phases.
Keywords:Thin films  Cu(In  Ga)Se2  X-ray fluorescence  Material losses  Ga distribution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号