The fracture toughness of niobium-based,in situ composites |
| |
Authors: | Kwai S. Chan |
| |
Affiliation: | (1) Southwest Research Institute, 78238-5166 San Antonio, TX |
| |
Abstract: | The fracture resistance of Nb-Cr-Ti alloys orin situ composites of three different compositions, Cr2Nb, and a Nb-10Siin situ composite was studied at ambient temperature. The crack-tip deformation and fracture behaviors were characterized using near-tip measurement techniques and fractographic analyses. The relevant fracture and toughening mechanisms were identified and related to the microstructure. Despite fracture by a combination of cleavage and slip band decohesion, the Nb solid-solution alloy exhibited a resistance-curve behavior with a relatively high toughness and local ductility. The source of toughness was modeled and explained in terms of a cracking process that involved alternate slip band decohesion and cleavage. Thein situ composites, on the other hand, exhibited cleavage fracture but considerably lower toughness with little or no resistance-curve behaviors. The difference in the fracture behavior appears to arise from two factors: (1) the presence of a high constraint in the Nb solid-solution matrix in thein situ composites, and (2) the lack of plastic flow associated with cleavage of the constrained Nb solid-solution matrix. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|