首页 | 本学科首页   官方微博 | 高级检索  
     

基于竞价的日发电计划混合智能优化算法
引用本文:舒隽,张粒子,王雁凌,肖鹏,郑华,杨以涵. 基于竞价的日发电计划混合智能优化算法[J]. 电力系统自动化, 2002, 26(21): 34-38
作者姓名:舒隽  张粒子  王雁凌  肖鹏  郑华  杨以涵
作者单位:华北电力大学电力系,北京市,102206
基金项目:国家电力公司重点学科资助项目
摘    要:针对电力市场下基于竞价的日发电计划的特点,提出一种充分结合遗传算法和排队算法各自优点的混合智能算法。该算法利用遗传算法在求解离散组合优化问题上的强收敛性和鲁棒性进行机组优化组合,利用排队算法的简洁性和快速性进行经济功率分配。同时,利用基于专家知识的免疫遗传算法来提高机组优化组合的计算速度。通过对某实际电力市场基于竞价的日发电计划的计算和分析,验证了该算法的正确性和实用性。

关 键 词:电力市场; 日发电计划; 机组优化组合; 经济功率分配; 免疫遗传算法; 排队算法
收稿时间:1900-01-01
修稿时间:1900-01-01

BID-BASED DAILY GENERATION SCHEDULING USING A MIXED INTELLIGENT OPTIMAL ALGORITHM
Shu Jun,Zhang Lizi,Wang Yanling,Xiao Peng,Zheng Hua,Yang Yihan. BID-BASED DAILY GENERATION SCHEDULING USING A MIXED INTELLIGENT OPTIMAL ALGORITHM[J]. Automation of Electric Power Systems, 2002, 26(21): 34-38
Authors:Shu Jun  Zhang Lizi  Wang Yanling  Xiao Peng  Zheng Hua  Yang Yihan
Abstract:An intelligent optimization algorithm with a combined use of the genetic algorithm and merit-order method is proposed for generation scheduling in bid-based electricity markets. The genetic algorithm is applied to solve the unit commitment for its outstanding characteristics of global convergence and robustness. The well-known merit-order algorithm is used to determine the dispatching levels of participating generators. The traditional immune genetic algorithm is improved by utilizing expert knowledge for assistance in searching feasible solutions. The proposed algorithm is applied to a practical system, and numerical results verify the correctness and validity of this method.
Keywords:electricity market  daily generation scheduling  optimal unit commitment  optimal power dispatch  immune genetic algorithm  merit-order algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电力系统自动化》浏览原始摘要信息
点击此处可从《电力系统自动化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号