首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的单幅图像超分辨率重建综述
引用本文:李彬,喻夏琼,王平,傅瑞罡,张虹. 基于深度学习的单幅图像超分辨率重建综述[J]. 计算机工程与科学, 2021, 43(1): 112-124. DOI: 10.3969/j.issn.1007-130X.2021.01.014
作者姓名:李彬  喻夏琼  王平  傅瑞罡  张虹
作者单位:(1.国防科技大学电子科学学院,湖南 长沙 410073;2.32021部队,北京 100094;3.中国船舶科学研究中心,江苏 无锡 214000)
摘    要:单幅图像超分辨率SISR重建指从单幅低分辨率图像恢复出高分辨率图像.深度学习方法越来越多地用于图像超分辨重建领域,由于深度网络模型可以自主学习低分辨率图像到高分辨率图像之间的映射关系,与传统方法相比在该领域展现出了更好的重建效果,因而基于深度学习的方法已经成为目前图像超分辨率重建领域的主流方向.围绕现有的超分辨深度网络...

关 键 词:深度学习  超分辨率重建  神经网络  信息融合
收稿时间:2019-12-17
修稿时间:2020-03-28

A survey of single image super-resolution reconstruction based on deep learning
LI Bin,YU Xia-qiong,WANG Ping,FU Rui-gang,ZHANG Hong. A survey of single image super-resolution reconstruction based on deep learning[J]. Computer Engineering & Science, 2021, 43(1): 112-124. DOI: 10.3969/j.issn.1007-130X.2021.01.014
Authors:LI Bin  YU Xia-qiong  WANG Ping  FU Rui-gang  ZHANG Hong
Affiliation:(1.College of Electronic Science and Technology,National University of Defense Technology,Changsha 410073;2.32021 Troops of the PLA,Beijing 100094;3.China Ship Science Research Center,Wuxi 214000,China)
Abstract:Single image super-resolution (SISR) refers to the recovery of a high-resolution image from a single low-resolution image. With deep learning used in the field of image super-resolution, deep networks can independently learn the mapping relationship between low-resolution and high-resolution training images, showing better reconstruction performance than the traditional methods. Therefore, deep learning has become dominant in super-resolution. This paper focuses on the exploration of the existing deep network model of super-resolution in terms of reconstruction mode, network structure, and loss function. By comparing the similarities and differences between different models, the advan- tages and disadvantages of different model building methods and the applicable application scenarios are analyzed. Meanwhile, the reconstruction results of different network models on the benchmark test datasets are compared and the potential directions are concluded.
Keywords:deep learning  super-resolution reconstruction  neural network  information fusion  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号