首页 | 本学科首页   官方微博 | 高级检索  
     

面部动态特征描述的抑郁症识别
引用本文:安昳,曲珍,许宁,尼玛扎西. 面部动态特征描述的抑郁症识别[J]. 中国图象图形学报, 2020, 25(11): 2415-2427
作者姓名:安昳  曲珍  许宁  尼玛扎西
作者单位:西藏大学信息科学技术学院, 拉萨 850000
基金项目:计算机及藏文信息技术国家级团队和重点实验室建设(藏教财指[2018]81号)
摘    要:目的 抑郁症是一种严重的精神类障碍,会显著影响患者的日常生活和工作。目前的抑郁症临床评估方法几乎都依赖于临床访谈或问卷调查,缺少系统有效地挖掘与抑郁症密切相关模式信息的手段。为了有效帮助临床医生诊断患者的抑郁症严重程度,情感计算领域涌现出越来越多的方法进行自动化的抑郁症识别。为了有效挖掘和编码人们面部含有的具有鉴别力的情感信息,本文提出了一种基于动态面部特征和稀疏编码的抑郁症自动识别框架。方法 在面部特征提取方面,提出了一种新的可以深层次挖掘面部宏观和微观结构信息的动态特征描述符,即中值鲁棒局部二值模式—3D正交平面(median robust local binary patterns from three orthogonal planes,MRELBP-TOP)。由于MRELBP-TOP帧级特征的维度较高,且含有部分冗余信息。为了进一步去除冗余信息和保留关键信息,采用随机映射(random projection,RP)对帧级特征MRELBP-TOP进行降维。此外,为了进一步表征经过降维后的高层模式信息,采用稀疏编码(sparse coding,SC)来抽象紧凑的特征表示。最后,采用支持向量机进行抑郁程度的估计,即预测贝克抑郁分数(the Beck depression inventory-II,BDI-II)。结果 在AVEC2013(the continuous audiovisual emotion and depression 2013)和AVEC2014测试集上,抑郁程度估计值与真实值之间的均方根误差(root mean square error,RMSE)分别为9.70和9.22,相比基准算法,识别精度分别提高了29%和15%。实验结果表明,本文方法优于当前大多数基于视频的抑郁症识别方法。结论 本文构建了基于面部表情的抑郁症识别框架,实现了抑郁程度的有效估计;提出了帧级特征描述子MRELBP-TOP,有效提高了抑郁症识别的精度。

关 键 词:抑郁症  中值鲁棒局部二值模式—3D正交平面  局部二值模式  稀疏编码  随机映射
收稿时间:2020-06-22
修稿时间:2020-08-21

Automatic depression estimation using facial appearance
An Yi,Qu Zhen,Xu Ning,Nima Zhaxi. Automatic depression estimation using facial appearance[J]. Journal of Image and Graphics, 2020, 25(11): 2415-2427
Authors:An Yi  Qu Zhen  Xu Ning  Nima Zhaxi
Affiliation:School of Information Science, Tibet University, Lhasa 850000, China
Abstract:
Keywords:depression  median robust local binary patterns from three orthogonal planes(MRELBP-TOP)  local binary patterns(LBP)  sparse coding(SC)  random projection(RP)
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号