首页 | 本学科首页   官方微博 | 高级检索  
     


N-[2,2-dimethyl-3-(N-(4-cyanobenzoyl)amino)nonanoyl]-L-phenylalanine ethyl ester as a stable ester-type inhibitor of chymotrypsin-like serine proteases: structural requirements for potent inhibition of alpha-chymotrypsin
Authors:K Iijima  J Katada  E Yasuda  I Uno  Y Hayashi
Affiliation:Life Science Research Center, Advanced Technology Research Laboratories, Nippon Steel Corporation, 3-35-1 Ida, Nakahara-ku, Kawasaki 211-0035, Japan.
Abstract:We introduce a new potent inhibitor, N-2, 2-dimethyl-3-(N-(4-cyanobenzoyl)amino)nonanoyl]-L-phenylalanine ethyl ester (3), which preferentially inhibits serine proteases belonging to a chymotrypsin superfamily. This inhibitor, despite consisting of a stable ethyl ester structure, showed strong inhibitory activities toward bovine alpha-chymotrypsin, human cathepsin G, and porcine elastase by acting as an acylating agent. The calculated inactivation rate constant (kinact) and enzyme-inhibitor dissociation constant (Ki) against alpha-chymotrypsin were 0.0028 s-1 and 0.0045 microM, respectively (kinact/Ki = 630 000 M-1 s-1). These kinetic parameters indicate that this inhibitor is one of the most powerful alpha-chymotrypsin inactivators ever reported. On the basis of structure-activity relationship (SAR) and structure-stability relationship studies of analogues of 3, which were modified in three parts of the molecule, i.e., the 4-cyanophenyl group, beta-substituent at the beta-amino acid residue, and ester structure, we suggest that the potent inhibitory activity of 3 is due to the following structural features: (1) the ethyl ester which enforces specific acyl-enzyme formation, (2) the n-hexyl group at the beta-position and 4-cyanophenyl group which stabilize the acyl-enzyme, and (3) the phenylalanine residue which functions for the specific recognition of S1 site in the enzyme. In particular, the action of 3 as a potent inhibitor, but poor substrate, can be ascribed largely to the very slow deacylation rate depending on the structure factors cited in feature 2. The results of inhibition by 3 and its analogues against different serine proteases such as chymase, cathepsin G, and elastase suggest that these compounds recognize common parts in the active sites among these chymotrypsin-like serine proteases, and 3 is one of the most suitable structures to recognize those common parts. Our results provide an intriguing basis for further developments in the design of a stable ester-based selective serine protease inhibitor.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号