首页 | 本学科首页   官方微博 | 高级检索  
     


Substitution Effects on Rare-Earth Ions-Doped Nickel-Zinc Ferrite Nanoparticles
Authors:R Kesavamoorthi  C Ramachandra Raja
Affiliation:1.Department of Physics,Government Arts College (Autonomous),Kumbakonam,India
Abstract:Rare-earth ions (RE3+)-doped Ni-Zn ferrite nanoparticles with a structural formula of Ni0.5Zn0.5Fe1.8RE0.2O4 (RE3+ = Nd, Ce, La and Pr) were synthesized at room temperature by a sol-gel auto-combustion method. The structural and magnetic properties of Ni-Zn ferrite samples were carried out by XRD, vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FE-SEM) and FT-IR spectroscopy. XRD pattern of Ni-Zn ferrite revealed that all the diffraction planes are in agreement with cubic spinel phase and the addition of Fe2O3 phase was also observed. In the case of RE ions-doped Ni-Zn ferrite in addition to the Fe2O3 phase, very low intensity peaks corresponding to some secondary phase are also present. The average crystallite sizes were found to be from 42 to 56 nm using the Scherer formula. The lattice constant (a) values are gradually decreased from 8.378 to 8.349 Å with different substitutions of RE3+ ions in the Ni-Zn ferrite samples. VSM analysis revealed that saturation magnetization values are decreased and coercivity values are increased with substitution of different RE3+ ions. FE-SEM images exhibits that particles are spherical in shape. FT-IR interpretation revealed that two main metal oxygen bands (564 and 411 cm?1) are observed in all the substituted Ni-Zn ferrite samples.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号