首页 | 本学科首页   官方微博 | 高级检索  
     

基于级连神经网络和SVD的文本分类新模型
引用本文:王燕霞,邓伟. 基于级连神经网络和SVD的文本分类新模型[J]. 计算机工程与应用, 2010, 46(26): 102-104. DOI: 10.3778/j.issn.1002-8331.2010.26.032
作者姓名:王燕霞  邓伟
作者单位:苏州大学 计算机科学与技术学院,江苏 苏州 215006
摘    要:提出了一个基于级连神经网络(Cascade-Correlation Neural Network,CCNN)和SVD(Singular Value Decomposition)的文本分类新模型。该神经网络用级连相关算法来训练网络。大部分的文本分类系统用向量空间模型(Vector Space Model,VSM)来表现文档,然而这种方法需要很高的维度,并且考虑不到文本特征词间的语义隐含信息,因此分类效果不是太理想。引入SVD来学习和表现文本特征词,在降低特征维度的基础上,将文本特征的隐含信息表现出来。实验证明,在加快训练速度的基础上,提高了分类的精度。

关 键 词:奇异值分解  神经网络  文本分类  BP算法  级联相关算法  
收稿时间:2009-02-27
修稿时间:2009-4-7 

New text categorization model based on cascade neural network and SVD
WANG Yan-xia,DENG Wei. New text categorization model based on cascade neural network and SVD[J]. Computer Engineering and Applications, 2010, 46(26): 102-104. DOI: 10.3778/j.issn.1002-8331.2010.26.032
Authors:WANG Yan-xia  DENG Wei
Affiliation:School of Computer Science & Technology,Soochow University,Suzhou,Jiangsu 215006,China
Abstract:A new text categorization model based on cascade neural network and Singular Value Decomposition(SVD) is proposed.The neural network is trained by the cascade-correlation algorithm.Most classic classification systems represent the contents of documents with a set of index terms,it has been known as Vector Space Model(VSM).However, this method needs a high dimensional space to represent the documents, and it does not take into account the semantic relationship between terms,which can lead to poor classification performance.In this paper, SVD is used to learn and represent relations among very large numbers of words and very large numbers of natural text passages in which they occurred.It can not only greatly reduce the dimensional but also discover the important associative relationships between terms.The experiments show that it also helps to accelerate the training speed and improves the classification accuracy.
Keywords:Singular Value Decomposition(SVD)  neural network  text categorization  BP algorithm  cascade-correlation algorithm
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号