首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation and properties evaluation of zirconia-based/Al2O3 composites as electrolytes for solid oxide fuel cell systems
Authors:L. M. Navarro  P. Recio  J. R. Jurado  P. Duran
Affiliation:(1) Electroceramics Department, Instituto de Ceramica y Vidrio (CSIC), 28500 Arganda del Rey, Madrid, Spain
Abstract:Yttria-doped zirconia powders containing 3 to 8 mol% Y2O3 and 0 to 20 wt% Al2O3 were prepared by both mixing commercial oxides and a coprecipitation method, and the mechanical and electrical properties have been examined as a function of the Al2O3 content. The bending strength of the composite at room temperature increased with increasing Al2O3 content. In the temperature range 500–1000 °C the bending strength increased with Al2O3 content up to 10 wt% and then decreased, the measured value at 1000 °C (200 MPa) being higher than those at lower temperatures for cubic zirconia materials. Fracture toughness (KIC) decreased with increasing Y2O3 content in the Al2O3-free zirconia materials. Al2O3 additions enhanced the fracture toughness and this was maximum (7 MPa m1/2) for the composite ZrO2-3 mol% Y2O3/10 wt% Al2O3. The electrical conductivity of cubic ZrO2/Al2O3 composites decreased monotonically with Al2O3 content, but in tetragonal ZrO2/Al2O3 composites hardly varied or apparently increased up to 10 wt% Al2O3. At 1000 °C the highest electrical conductivity was 0.30 S cm–1 for ZrO2-8 mol% Y2O3, and this decreased up to 0.10 S cm–1 for the composite ZrO2-8mol% Y2O3/20 wt% Al2O3.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号