首页 | 本学科首页   官方微博 | 高级检索  
     

基于分块与前景/背景信息的MeanShift目标跟踪
引用本文:顾幸方. 基于分块与前景/背景信息的MeanShift目标跟踪[J]. 杭州电子科技大学学报, 2011, 0(6): 75-78
作者姓名:顾幸方
作者单位:南京理工大学自动化学院,江苏南京210094
摘    要:针对经典Mean Shift跟踪算法在目标遮挡和复杂背景情况下易造成目标漂移甚至丢失的缺点,该文研究了基于分块与前景/背景信息的Mean Shift跟踪方法.首先根据实际目标尺寸对跟踪窗口进行分块,然后对每个子块独立进行Mean Shift跟踪,最后按照一定的准则融合每个子块的跟踪结果以确定整体目标的位置.并且,通过目...

关 键 词:目标跟踪  均值漂移  目标遮挡  分块跟踪  前景/背景信息

Robust Object Tracking Using Fragments-based Mean Shift and Foreground/Background Information
GU Xing-fang. Robust Object Tracking Using Fragments-based Mean Shift and Foreground/Background Information[J]. Journal of Hangzhou Dianzi University, 2011, 0(6): 75-78
Authors:GU Xing-fang
Affiliation:GU Xing-fang (School of Automation,Nanjing University of Science and Technology,Nanjing Jiangsu 210094,China)
Abstract:A robust tracking algorithm is proposed to solve the problem that traditional mean-shift based trackers always drift or even lose the targets under occlusions and clutter.The target is divided into several fragments based on target's shape and size,the mean shift algorithm is used for every fragment to find a best matching location independently.The confidence of each fragment is computed and only the fragments with higher confidence are involved to determine the location of the entire target.Furthermore,weights give to different colors in tracking window to separate reliable parts of object from its background based on foreground/background histogram analysis.The proposed algorithm is test on several challenging videos,and encouraging results indicate the efficiency of the algorithm in both handling occlusion and clutter.
Keywords:object tracking  mean shift  object occlusion  fragment  foreground/background information
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号