首页 | 本学科首页   官方微博 | 高级检索  
     


Scattering from lossy dielectric objects buried beneath randomlyrough ground: validating the semi-analytic mode matching algorithm with2-D FDFD
Authors:Morgenthaler  AW Rappaport  CM
Affiliation:Dept. of Electr. Eng., Northeastern Univ., Boston, MA;
Abstract:A new semi-analytic mode matching (SAMM) algorithm is verified by two-dimensional (2-D) finite difference frequency domain (FDFD) simulations of scattering resulting from uniform plane waves incident on randomly rough dielectric half-spaces containing buried dielectric targets. The SAMM algorithm uses moderately low-order modal superpositions of cylindrical waves, each of which satisfies the 2-D-Helmholtz equation in its appropriate region (air, ground, or mine) and then matches all nonzero electric and magnetic field components at each interface by inverting a highly overconstrained dense linear matrix equation by singular value decomposition. That is, the set of cylindrical mode coefficients is found which best fits the boundary conditions in a least squares sense. For smooth ground, coordinate scattering centers (CSCs) are chosen at the mine center and at its image above the plane to model scattering. For randomly rough ground, additional CSCs are located within the rough boundary layer. Excellent agreement between 2-D-FDFD and the 2-D version of SAMM is observed, with 2-D-SAMM being at least an order of magnitude faster. 3-D-SAMM is estimated to be four orders of magnitude faster than 3-D-FDFD, with drastically reduced memory requirements
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号