首页 | 本学科首页   官方微博 | 高级检索  
     

基于梯度提升决策树的变形宏病毒检测
引用本文:闫华,刘嘉,位凯志,古亮. 基于梯度提升决策树的变形宏病毒检测[J]. 计算机系统应用, 2021, 30(5): 39-46. DOI: 10.15888/j.cnki.csa.007883
作者姓名:闫华  刘嘉  位凯志  古亮
作者单位:中国科学院 深圳先进技术研究院, 深圳 518071;深信服科技股份有限公司, 深圳 518071;中国科学院 深圳先进技术研究院, 深圳 518071;深信服科技股份有限公司, 深圳 518071
基金项目:中国博士后科学基金(2020M682837)
摘    要:宏病毒在高级持续性威胁中被广泛运用.其变形成本低廉且方式灵活,导致传统的基于病毒规则库的反病毒系统难于有效对抗.提出一种基于梯度提升决策树的变形宏病毒检测方法.该方法以病毒专家经验为指导,实施大规模特征工程,基于词法分析对变形宏病毒做细粒度建模,并使用海量样本训练模型.实验表明,该方法能够准确检测企业级用户网络中传播的...

关 键 词:信息安全  宏病毒  反病毒  机器学习  梯度提升决策树
收稿时间:2020-09-07
修稿时间:2020-09-25

Obfuscated Macro Malware Detection Based on Gradient Boosting Decision Tree
YAN Hu,LIU Ji,WEI Kai-Zhi,GU Liang. Obfuscated Macro Malware Detection Based on Gradient Boosting Decision Tree[J]. Computer Systems& Applications, 2021, 30(5): 39-46. DOI: 10.15888/j.cnki.csa.007883
Authors:YAN Hu  LIU Ji  WEI Kai-Zhi  GU Liang
Affiliation:Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518071, China;Sangfor Technologies Inc., Shenzhen 518071, China
Abstract:Macro malware is widely used in advanced persistent threats. Macro obfuscation is low-cost and flexible, rendering traditional rule-based anti-malware systems insufficient. A gradient-boosting-decision-tree-based approach to detecting obfuscated macro malware is proposed. The approach performs large-scale feature engineering guided by the expertise of malware specialists, with fine-grained modeling for obfuscated macro malware carried out on top of lexical analysis, and massive samples are used to train the model. Experimental results show that the approach is able to precisely detect real-world obfuscated macro malware found in the network of enterprise customers, as well as those variants generated by mainstream obfuscation tools; 10-fold cross validation is carried out for a total of 4000 000 macro programs, giving a precision of 99.41% and a recall of 97.34%, which outperforms existing works.
Keywords:information security  macro malware  anti-virus  machine learning  gradient boosting decision tree
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号