首页 | 本学科首页   官方微博 | 高级检索  
     

基于逆类别注意力机制的电商文本分类
引用本文:王维,胡慧君,刘茂福. 基于逆类别注意力机制的电商文本分类[J]. 计算机系统应用, 2021, 30(5): 247-252. DOI: 10.15888/j.cnki.csa.007882
作者姓名:王维  胡慧君  刘茂福
作者单位:武汉科技大学 计算机科学与技术学院, 武汉 430065;智能信息处理与实时工业系统湖北省重点实验室, 武汉 430081
基金项目:武汉科技大学大学生创新创业训练计划(18ZRA078); 国家社会科学基金重大计划(11&ZD189)
摘    要:电商数据所属类别对于分析电商数据有重要意义,基于人力的分类无法适应如今海量的电商数据,基于传统算法模型的分类难以提取有价值的人工特征.本文采用BiLSTM模型并且引入注意力机制,将其应用于电商数据分类中.该模型包括Embedding层、BiLSTM层、注意力机制层和输出层.Embedding层加载Word2Vec开源工...

关 键 词:电商数据  文本分类  Word2Vec  BiLSTM模型  注意力机制
收稿时间:2020-09-03
修稿时间:2020-09-25

E-Commerce Text Classification Based on Reverse Category Attention Mechanism
WANG Wei,HU Hui-Jun,LIU Mao-Fu. E-Commerce Text Classification Based on Reverse Category Attention Mechanism[J]. Computer Systems& Applications, 2021, 30(5): 247-252. DOI: 10.15888/j.cnki.csa.007882
Authors:WANG Wei  HU Hui-Jun  LIU Mao-Fu
Affiliation:School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, China;Key Laboratory of Intelligent Information Processing and Real-Time Industrial System of Hubei Province, Wuhan 430081, China
Abstract:The category of e-commerce data is of great significance for its analysis. The classification based on human resources cannot adapt to the massive e-commerce data nowadays, and the classification based on traditional algorithm models can hardly extract valuable artificial features. In this study, the BiLSTM model integrated with an attention mechanism is introduced to classify e-commerce data. The model includes embedding layer, BiLTM layer, attention mechanism layer, and output layer. The embedding layer loads the word vector trained by Word2Vec; the BiLSTM layer captures the context of each word; the attention mechanism layer allocates weights for each word to synthesize new sample features. The experimental results show that the classification accuracy of the attention mechanism based on the inverse class frequency reaches 91.93%, which is improved compared with the BiLSTM model without the attention mechanism and other attention mechanisms introduced. This model has a good effect in the classification of e-commerce data and points out a new thinking direction for the introduction of attention mechanisms.
Keywords:e-commerce data  text classification  Word2Vec  BiLSTM  attention
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号