首页 | 本学科首页   官方微博 | 高级检索  
     


Fault isolation in nonlinear systems with structured partial principal component analysis and clustering analysis
Authors:Yunbing Huang  Thomas J. Mcavoy  Janos Gertler
Abstract:Partial principal component analysis (PCA) and parity relations are proven to be useful methods in fault isolation. To overcome the limitation of applying partial PCA to nonlinear problems, a new approach utilizing clustering analysis is proposed. By dividing a partial data set into smaller subsets, one can build more accurate PCA models with fewer principal components, and isolate faults with higher precision. Simulations on a 2 × 2 nonlinear system and the Tennessee Eastman (TE) process show the advantages of using the clustered partial PCA method over other nonlinear approaches.
Keywords:fault isolation  nonlinear systems  structured partial PCA  clustering analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号