首页 | 本学科首页   官方微博 | 高级检索  
     

基于相似度匹配的微服务故障诊断方法
引用本文:陈皓,许源佳,王焘,张文博. 基于相似度匹配的微服务故障诊断方法[J]. 计算机系统应用, 2021, 30(5): 1-11. DOI: 10.15888/j.cnki.csa.007888
作者姓名:陈皓  许源佳  王焘  张文博
作者单位:中国科学院 软件研究所, 北京 100190;中国科学院 软件研究所, 北京 100190;中国科学院大学, 北京 100049;中国科学院 软件研究所, 北京 100190;中国科学院 软件研究所 计算机科学国家重点实验室, 100190
基金项目:国家重点研发计划(2017YFB1400804); 国家自然科学基金(61872344); 北京市自然科学基金(4182070); 中国科学院青年创新促进会人才专项(2018144)
摘    要:随着互联网服务的快速发展,分布式的微服务应用逐渐取代传统的单体应用成为互联网应用的主要形式之一.微服务应用在具有可伸缩性、容错性、高可用性等优点的同时,也存在着构建繁琐、部署复杂和维护困难等挑战.面向云计算环境的微服务监测与运维是当前的研究热点,但仍然存在粒度较粗、故障定位不准确等缺点.针对以上问题,本文提出了一种基于...

关 键 词:云计算  故障诊断  执行轨迹  微服务
收稿时间:2020-08-31
修稿时间:2020-09-23

Fault Diagnosis Method Based on Trace Similarity Matching
CHEN Hao,XU Yuan-Ji,WANG Tao,ZHANG Wen-Bo. Fault Diagnosis Method Based on Trace Similarity Matching[J]. Computer Systems& Applications, 2021, 30(5): 1-11. DOI: 10.15888/j.cnki.csa.007888
Authors:CHEN Hao  XU Yuan-Ji  WANG Tao  ZHANG Wen-Bo
Affiliation:Institute of Software, Chinese Academy of Sciences, Beijing 100190, China;Institute of Software, Chinese Academy of Sciences, Beijing 100190, China;University of Chinese Academy of Sciences, Beijing 100049, China;Institute of Software, Chinese Academy of Sciences, Beijing 100190, China;State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
Abstract:Along with the rapid development of internet services, the distributed microservice-based application has gradually replaced the traditional application as one of the main forms of Internet applications. Distributed microservice-based applications boast scalability, high fault tolerance, and great availability, but they are often challenged by cumbersome installation, complicated deployment, and difficult maintenance. Kubernetes, as the most popular container-based cluster management system, is affected by coarse grains, inaccurate fault location, and other weaknesses. To address the above issues, this study proposes a fault detection method based on trace similarity matching: First, use injecting proxy to forward request traffic to collect tracking information about microservices. Then, collect the state information during normal operation of the system and record the performance of the system after the failure occurs by injecting known faults. Finally, take string edit distance as the standard for the execution tracking models of unknown and known faults. The edit distance serves as a standard to measure the similarity, and the possible cause of failure is identified. Experimental results show that the method can accurately describe the processing and execution tracking information of the request and find the cause of system failure with microservices as the granularity.
Keywords:cloud computing  fault diagnosis  execution traces  microservices
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号