首页 | 本学科首页   官方微博 | 高级检索  
     


Theory of Thermal Conduction in Thin Ceramic Films
Authors:P G Klemens
Affiliation:(1) Department of Physics, University of Connecticut, Storrs, Connecticut, 06269-3046, U.S.A
Abstract:The theory of heat conduction in ceramics by phonons, and at high temperatures also by infrared radiation, is reviewed. The phonon mean free path is limited by three-phonon interactions and by scattering of various imperfections. Point defects scatter high-frequency phonons; extended imperfections, such as inclusions, pores, and grain boundaries, affect mainly low-frequency phonons. Thermal radiation is also scattered by imperfections, but of a larger size, such as splat boundaries and large pores. Porosity also reduces the effective index of refraction. For films there are also external boundaries, cracks, and splat boundaries, depending on the method of deposition. Examples discussed are cubic zirconia, titanium oxide, and uranium oxide. Graphite and graphene sheets, with two-dimensional phonon gas, are discussed briefly.
Keywords:graphene  lattice defects  oxides  phonons  pores  thermal radiation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号