首页 | 本学科首页   官方微博 | 高级检索  
     


Damaging Prediction of Difficult-to-Work Aluminum Alloys During Equal Channel Angular Pressing
Authors:Radu Comaneci  Luchian Zaharia  Romeu Chelariu
Affiliation:(1) Faculty of Materials Science and Engineering, Technical University “Gh. Asachi”, D. Mangeron 61A, 700050 Iasi, Romania
Abstract:Severe plastic deformation (SPD) is a well-established method in the recent years for grain refinement in metallic materials. Equal channel angular pressing (ECAP) is one of the most effective SPD techniques. Inherent failures of ECAP, consisting in billet damage, take place if not made a correct process design. In this article, the evolution of damaging for a difficult-to-work Al-Mg alloy during ECAP was investigated. A tridimensional finite element analysis was performed for four different die designs to study the influence of die geometry and process parameters on billet damaging. To validate modeling we used, load level and strain distribution were depicted. Experimental tests were performed to test the numerical prediction. The results show that cracking may be reduced or eliminated by inner fillet corner of the die channels. It was demonstrated that the predicted results were in good agreement with experimental data obtained for 5052 aluminum alloy. The direct effect of knowledge about load and damaging during ECAP is to prevent both tool and billet damage.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号