首页 | 本学科首页   官方微博 | 高级检索  
     


FTIR investigation of adsorption and chemical decomposition of CCl4 by high surface-area aluminum oxide
Authors:Khaleel Abbas  Dellinger Barry
Affiliation:Department of Chemistry, Louisiana State University, Baton Rouge 70803, USA.
Abstract:Chlorinated hydrocarbons are among the most recalcitrant pollutants for control by sorption or catalytic destruction. High surface-area alumina holds promise as a catalytic media as well as a component of other binary catalyst systems. We have prepared an alumina catalyst using the aerogel technique that has a very high surface area of 550 m2/g. This catalyst destroys carbon tetrachloride with an efficiency >99% at 400 degrees C. Its reactivity toward carbon tetrachloride is remarkably higher than that of commercial alumina, which has a surface area of 155 m2/g. Carbon dioxide is the major product. Minor products include hydrogen chloride and tetrachloroethylene along with traces of phosgene. Some of the carbon tetrachloride reacts with the alumina to form aluminum chloride, which vaporizes to reveal a fresh catalytic surface. A mechanism for adsorption and destruction has been developed that involves chemisorption followed by surface to adsorbate oxygen transfer and adsorbate to surface chlorine transfer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号