首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波变换的风电上网电价的预测
引用本文:张强,赵巧娥. 基于小波变换的风电上网电价的预测[J]. 电力学报, 2011, 26(6): 491-494
作者姓名:张强  赵巧娥
作者单位:山西大学工程学院,太原,030001
摘    要:提出基于小波变换和神经网络的预测模式,首先利用小波变换将历史销售电价序列分解为高频和低频序列,并分别构造学习样本作为神经网络的输入,对不同频率的序列分别采用神经网络进行预测,然后将不同频率预测结果通过小波重构,得到销售电价,并根据合理的输配电价管制模型推算上网电价,阐述影响风电上网电价的因素,实现对风电上网电价的预测。结果表明:提出的预测方法对美国PJM电力市场的历史节点边际电价(LMP)进行预测是有效的,从电力市场的角度入手分析风电上网电价机制具有重要意义。

关 键 词:电价预测  风电  上网电价  小波变换  BP神经网络

Forecast of Wind Power On-grid Price Based on Wavelet Transforming
ZHANG Qiang , ZHAO Qiao-e. Forecast of Wind Power On-grid Price Based on Wavelet Transforming[J]. Journal of Electric Power, 2011, 26(6): 491-494
Authors:ZHANG Qiang    ZHAO Qiao-e
Affiliation:(Engineering College of Shanxi University,Taiyuan 030013,China)
Abstract:A wavelet transforming and neural network forecasting model is presented.First, decompose the history location marginal price sequence into high frequency and low frequency sequences by using wavelet transform,construct the learning samples as the input of a neural network, and predict the sequences of different frequencies with neural networks.Then,achieve wavelet reconstruction and get the theoretical numerical value of LMP.Finally,discuss the results of electricity price on-grid with the analysis of electricity transmission and distribution price.The results show that the forecasting method is effective to forecast the historical location marginal price of the California electricity market,and the analysis of wind power on-grid electricity price mechanism from the angle power market is of important significance.
Keywords:electricity price forecasting  wind power  on-grid electricity price  wavelet transform  BP neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号