首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊理论的行人异常动作检测
引用本文:张军,刘志镜. 基于模糊理论的行人异常动作检测[J]. 模式识别与人工智能, 2010, 23(3): 421-427
作者姓名:张军  刘志镜
作者单位:西安电子科技大学,计算机学院,西安,710071;石家庄职业技术学院,信息工程系,石家庄,050081;西安电子科技大学,计算机学院,西安,710071
基金项目:广东省教育部产学研结合计划资助项目
摘    要:为在智能监控系统中自动识别行人的异常动作,提出简化的人体关节模型图。根据行人躯干和四肢轮廓角度的变化,设计用于模糊化的函数式。提出利用躯干和四肢的模糊隶属度通过计算来得到整个人异常度的一种基于模糊理论异常行为判别的算法。在系统实现中,提出利用质心轨迹和模糊判别的联合方法来甄别行人是否异常的方法。模糊判别可实现在视频监控范围内对行人行为的主动分析,从而能够对行人异常的动作做出识别并进行报警处理。通过实验证明该方法具有较高的识别率。

关 键 词:智能监控  模糊理论  模糊判别  关节模型
收稿时间:2008-09-08

Abnormal Behavior of Pedestrian Detection Based on Fuzzy Theory
ZHANG Jun,LIU Zhi-Jing. Abnormal Behavior of Pedestrian Detection Based on Fuzzy Theory[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(3): 421-427
Authors:ZHANG Jun  LIU Zhi-Jing
Affiliation:1.School of Computer Science and Technology,Xidian University,Xian 710071
2.Department of Information Engineering,Shijiazhuang Vocational Technology Institute,Shijiazhuang 050081
Abstract:To automatically identify pedestrian abnormal movement in Intelligent Monitoring System, a simplified articulated model of human body is presented. A fuzzification function using the variety in trunk and limbs contour angles of pedestrian is designed. Then an abnormal behavior discrimination algorithm based on fuzzy theory is proposed. The algorithm applies fuzzy membership of the trunk and limbs of pedestrian to get the overall degree of anomaly. In the system realization, a method of combining center of mass trajectory and fuzzy discriminant is proposed to discriminate the anomaly of pedestrian. Fuzzy discriminant can implement active analysis of pedestrian behavior in visual surveillance and thereby detect irregularities to recognize abnormal behavior and alarm. The experimental results show that the proposed algorithm has a higher recognition rate.
Keywords:Intelligent Monitoring  Fuzzy Theory  Fuzzy Discriminant  Arthrosis Joint Articulation Model  
本文献已被 万方数据 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号