首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进的保局投影视频特征提取
引用本文:肖永良,夏利民. 基于改进的保局投影视频特征提取[J]. 模式识别与人工智能, 2010, 23(3): 396-401
作者姓名:肖永良  夏利民
作者单位:1.中南大学 信息科学与工程学院 长沙 410083
2.湖南财政经济学院 信息管理系 长沙 410205
基金项目:高等学校博士学科点专项科研基金项目,湖南省自然科学基金项目,湖南省科技计划项目,湖南省教育厅项目,湖南省教育厅教育科学项目
摘    要:提出一种视频镜头特征提取方法。针对保局投影变换要预先指定降维后的维数和近邻参数K,根据降维前后的结构误差提出确定最佳降维维数的方法,结合各个数据点邻域的统计特征实现近邻参数K的动态选择。在此基础上,将多个视频镜头的高维特征投影到低维空间获得最佳投影矩阵,新的视频特征根据此投影矩阵进行降维处理。对比实验结果表明,通过保局投影变换提取出来的特征比其它特征更加有利于视频的镜头分割。

关 键 词:保局投影(LPP)  特征提取  结构误差  流形学习  
收稿时间:2009-04-07

Video Feature Extraction Based on Improved Locality Preserving Projections
XIAO Yong-Liang,XIA Li-Min. Video Feature Extraction Based on Improved Locality Preserving Projections[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(3): 396-401
Authors:XIAO Yong-Liang  XIA Li-Min
Affiliation:1.School of Information Science and Engineering,Central South University,Changsha 410083
2.Department of Information Management,Hunan College of Finance and Economics,Changsha 410205
Abstract:A method to extract video feature is introduced. To solve the problems related to the projection dimension and nearest neighbor K in locality preserving projections (LPP), the method to determine the optimal projection dimension based on structure error between dimension reduction before and after is proposed in this papers. The nearest neighbor K is dynamically selected combining with the neighbor statistical character of each data. On the basis of the above an optimal projection matrix of video feature is obtained by using LPP, and then the high dimension feature of new video is reduced to a lower one through the projection matrix. The comparison of experimental results show that the feature based on LPP is more favorable for shot segmentation than the other features.
Keywords:Locality Preserving Projections (LPP)  Feature Extraction  Structure Error  Manifold Learning  
本文献已被 万方数据 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号