首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征融合的脱机中文笔迹鉴别
引用本文:鄢煜尘,陈庆虎,袁凤,邓伟. 基于特征融合的脱机中文笔迹鉴别[J]. 模式识别与人工智能, 2010, 23(2): 203-209
作者姓名:鄢煜尘  陈庆虎  袁凤  邓伟
作者单位:武汉大学电子信息学院,武汉,430079;武汉大学电子信息学院,武汉,430079;武汉大学电子信息学院,武汉,430079;武汉大学电子信息学院,武汉,430079
摘    要:提出一种基于文本依存笔迹特征融合的文本独立特征构造方法。建立基于方向指数直方图法笔迹特征(文本依存特征)的两因子分解模型。笔迹特征可分解成字符因子和书写因子两部分。通过两因子方差分析与数据挖掘,分离出与字符无关的书写因子,得到基于文本依存方法的文本独立特征。该方法对检材与样本笔迹的字符数量较少,特别是相同字很少或是根本没有相同字的情况下,能取得较理想的笔迹鉴别准确率,为少量字笔迹鉴别提供解决问题的思路。

关 键 词:数据挖掘  笔迹鉴别  文本独立方法  文本依存方法  特征融合  方向指数直方图
收稿时间:2009-01-04

Writer Identification of Offline Chinese Handwriting Documents Based on Feature Fusion
YAN Yu-Chen,CHEN Qing-Hu,YUAN Feng,DENG Wei. Writer Identification of Offline Chinese Handwriting Documents Based on Feature Fusion[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(2): 203-209
Authors:YAN Yu-Chen  CHEN Qing-Hu  YUAN Feng  DENG Wei
Affiliation:School of Electronic Information,Wuhan University,Wuhan 430079
Abstract:A text-independent method for writer identification is proposed based on the fusion of text-dependent features. A two-factor model is developed, and thus the feature of handwriting is decomposed into the character factor and the writing factor. According to the deviation analysis of the two factors and data mining, the writing factor is separated, the text-independent feature based on text-dependent method is extracted, and the classifier is developed. The proposed method is effective for the samples with few characters, especially for the samples without the same characters between the unknown script and the corresponding one in the database. The proposed method provides a new way for writer identification with few characters in the writing sample.
Keywords:Data Mining  Writer Identification  Text-Independent Approach  Text-Dependent Approach  Feature Fusion  Direction Index Histogram  
本文献已被 万方数据 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号