首页 | 本学科首页   官方微博 | 高级检索  
     

基于增强Gabor特征和直接分步线性判别分析的人脸识别
引用本文:邹建法,王国胤,龚勋. 基于增强Gabor特征和直接分步线性判别分析的人脸识别[J]. 模式识别与人工智能, 2010, 23(4): 477-482
作者姓名:邹建法  王国胤  龚勋
作者单位:重庆邮电大学,计算机科学与技术研究所,重庆,400065;西南交通大学,信息科学与技术学院,成都,610031
基金项目:重庆市杰出青年科学基金资助项目
摘    要:Gabor特征能从不同方向和尺度有效表示人脸图片的局部特征,但是利用传统Gabor特征的方法却忽略原始人脸图片所包含的全局特征。文中把Gabor特征和原始图片信息结合起来,构成增强的Gabor特征,并结合直接分步线性判别分析算法,提出一种人脸识别方法。在Yale、ORL和Georgia Tech人脸库的仿真实验结果表明,相对于传统Gabor特征,增强Gabor特征能够有效提高人脸识别率。

关 键 词:人脸识别  特征选择  Gabor特征  直接分步线性判别分析
收稿时间:2009-05-12

Face Recognition Based on Enhanced Gabor Feature and Direct Fractional-Step Linear Discriminant Analysis
ZOU Jian-Fa,WANG Guo-Yin,GONG Xun. Face Recognition Based on Enhanced Gabor Feature and Direct Fractional-Step Linear Discriminant Analysis[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(4): 477-482
Authors:ZOU Jian-Fa  WANG Guo-Yin  GONG Xun
Affiliation:1.Institute of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065
2.School of Information Science and Technology,Southwest Jiaotong University,Chengdu 610031
Abstract:Gabor features can effectively represent the local features of face image with different directions and scales. However, traditional Gabor features based algorithms neglect the global features of the original image. Enhanced Gabor features (EGF) is developed in this paper by combining Gabor features and information extracted from the original image. A face recognition method is further proposed based on EGF and direct fractional-step linear discriminant analysis algorithm (DF_LDA). Experiment results of simulation on Yale, ORL and Georgia face databases show that EGF can effectively improve the face recognition rate compared with the traditional Gabor features.
Keywords:Face Recognition  Feature Selection  Gabor Feature  Direct Fractional-Step Linear Discriminant Analysis  
本文献已被 万方数据 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号