首页 | 本学科首页   官方微博 | 高级检索  
     

基于几何特征及C 4.5的人脸美丽分类方法
引用本文:毛慧芸,金连文,杜明辉. 基于几何特征及C 4.5的人脸美丽分类方法[J]. 模式识别与人工智能, 2010, 23(6): 809-814
作者姓名:毛慧芸  金连文  杜明辉
作者单位:华南理工大学,电子与信息学院,广州,510640;华南理工大学,电子与信息学院,广州,510640;华南理工大学,电子与信息学院,广州,510640
基金项目:国家自然科学基金,广东省自然科学基金
摘    要:从机器学习的角度来探索人脸美,提出与中国女性美丽程度相关的17维特征提取方法,然后运用C4。5分类树对不同美丽评分的人脸图像进行训练和测试。对510幅中国女性人脸图像的实验结果表明,文中提出的人脸美丽评价方法简单可行。对于美丽与否的两类别,平均分类精度达到94。1%。而对于4种美丽等级的分类,可达到71。6%的精度。研究表明通过合适的特征及C4。5机器学习来进行人脸美丽的智能感知是可行的。

关 键 词:智能系统  人脸美丽分类  图像理解  特征提取
收稿时间:2009-07-15

Facial Beauty Classification Based on Geometric Features and C 4.5
MAO Hui-Yun,JIN Lian-Wen,DU Ming-Hui. Facial Beauty Classification Based on Geometric Features and C 4.5[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(6): 809-814
Authors:MAO Hui-Yun  JIN Lian-Wen  DU Ming-Hui
Affiliation:School of Electronic and Information Engineering,South China University of Technology,Guangzhou 510640
Abstract:An automated Chinese female facial beauty classification approach is presented through the application of machine learning algorithm of C4.5. Seventeen geometric features are designed to abstractly represent each facial image. With large set of 510 Chinese female facial images, high average accuracy of 94.1% is obtained for two-level classification-beautiful or not, and the average accuracy of 4-level classification is 71.6%. The results show that the notion of beauty perceived by human can also be learned by machine through using machine learning techniques.
Keywords:Intelligent System  Facial Beauty Classification  Image Understanding  Feature Extraction  
本文献已被 万方数据 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号