首页 | 本学科首页   官方微博 | 高级检索  
     

Liquid droplet movement on horizontal surface with gradient surface energy
摘    要:A surface with gradient surface energy was fabricated on a silicon wafer by using the chemical vapor deposition (CVD) technology with the dodecyltrichlorosilane (C12H25Cl3Si) vapor which was adsorbed chemically on the surface of the silicon wafer to form a self-assemble monolayer (ASM) and thus a gradient profile of wettability. The microscopic contours of the gradient surface were measured with Seiko SPA400 atom force microscope (AFM). And the surface wettability profile was characterized by the sessile drop method, measuring the contact angle of fine water droplets that lay on the gradient surface, to represent the distribution of the surface energy on the surface. Using a high-speed video imaging system, the motion of water droplet on the horizontal gradient surface was visualized and the transient velocity was measured under ambient condition. The experimental results show that the liquid droplets can be driven to move from hydrophobic side to hydrophilic side on the horizontal gradient surface and the velocity of droplet can reach up to 40 mm/s. In addition, the motion of the water droplet can be generally divided into two stages: an acceleration stage and a deceleration stage. The droplet presents a squirming movement on the surface with a lower peak velocity and a larger extent of deceleration motion. And the static advancing contact angle of the droplet is obviously larger than the dynamic advancing contact angle on the gradient energy surface.

收稿时间:28 July 2005
修稿时间:11 September 2006

Liquid droplet movement on horizontal surface with gradient surface energy
Authors:LIAO Qiang  WANG Hong  ZHU Xun  LI Mingwei
Affiliation:Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
Abstract:A surface with gradient surface energy was fabricated on a silicon wafer by using the chemical vapor deposition (CVD) technology with the dodecyltrichlorosilane (C12H25Cl3Si) vapor which was adsorbed chemically on the surface of the silicon wafer to form a self-assemble monolayer (ASM) and thus a gradient profile of wettability. The microscopic contours of the gradient surface were measured with Seiko SPA400 atom force microscope (AFM). And the surface wettability profile was characterized by the sessile drop method, measuring the contact angle of fine water droplets that lay on the gradient surface, to represent the distribution of the surface energy on the surface. Using a high-speed video imaging system, the motion of water droplet on the horizontal gradient surface was visualized and the transient velocity was measured under ambient condition. The experimental results show that the liquid droplets can be driven to move from hydrophobic side to hydrophilic side on the horizontal gradient surface and the velocity of droplet can reach up to 40 mm/s. In addition, the motion of the water droplet can be generally divided into two stages: an acceleration stage and a deceleration stage. The droplet presents a squirming movement on the surface with a lower peak velocity and a larger extent of deceleration motion. And the static advancing contact angle of the droplet is obviously larger than the dynamic advancing contact angle on the gradient energy surface.
Keywords:chemical vapor deposition  surface with gradient surface energy  contact angle profile  droplet motion
本文献已被 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号