首页 | 本学科首页   官方微博 | 高级检索  
     


Strength and post‐yield behavior of T‐section steel encased by structural concrete
Authors:JD Nzabonimpa  Won‐Kee Hong  Jisoon Kim
Affiliation:Department of Architectural Engineering, Kyung Hee University, Yongin, Republic of Korea
Abstract:In this study, the seismic performance of unsymmetrical steel–concrete composite precast beams with T‐shaped steel section were numerically explored and validated by their earlier experimental investigation. This design is based on the proposed calibrated finite element model in which key damage parameters for the evaluation of the nonlinear, post‐yield behavior of the precast composite steel beams were identified. The proposed nonlinear finite‐element‐based numerical model uses various parameters, including the dilatation angle and concrete‐damaged plasticity, to simulate the nonlinear behavior of unsymmetrical composite precast beams with T‐section steel. Greater seismic capacity with greater ductility, contributing to a maximized structural capacity within the composite precast beams was introduced by the effective use of the 2 materials, steel and concrete, and shown by the nonlinear hysteretic investigation of unsymmetrical steel–concrete composite precast beams that was validated experimentally. The post‐yield structural capacity found via the numerical analysis agrees with experimental results when the concrete‐damaged plasticity of the plastic‐damaged seismic model for concrete and the von Mises criteria of the steel section were introduced into the finite element model. Practical design parameters and recommendations were eventually suggested by examining the influence of precast composite beams with unsymmetrical steel sections on the concrete degradations and damage evolution.
Keywords:damaged plasticity  dilation angle  fracture energy  reinforced concrete precast frames  steel–  concrete composite precast frames  yield surface
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号