首页 | 本学科首页   官方微博 | 高级检索  
     


Theoretical investigations on load‐bearing capacity of RC flat‐plate framed structures subject to middle column loss
Authors:Jing‐Zhou Zhang  Guo‐Qiang Li  Yan‐Bo Wang  Jian Jiang
Affiliation:1. College of Civil Engineering, Tongji University, Shanghai, China;2. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China;3. Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
Abstract:This paper presents theoretical studies on load‐bearing capacity of reinforced concrete flat‐plate framed structures. The existing methods for determining load‐bearing capacity of simply supported slabs are first reviewed, and their limitations are presented. An energy‐based refined method is then proposed to enhance the accuracy of the existing methods by considering the contributions to internal energy dissipation due to the extension of reinforcing bars along yield lines, the additional resultant bending moment from membrane forces, and the sectional bending moment along yield lines of slabs. The refined method for simply supported slabs is extended for fixed supported slabs, and thus, the load‐bearing capacity of reinforced concrete flat‐plate structures subject to a middle column loss is analytically determined. The performance of the proposed method is validated against test results and also verified against finite element analyses. Parametric studies are conducted to investigate the effect of reinforcement ratio, slab thickness and aspect ratio on the stiffness, and yield‐line resistance of structures. It is found that for the fixed supported slabs, it is reasonable to assume negative yield lines along the slab edges to consider the effect of obvious concrete crushing along the edge. Square slabs have higher ultimate loads than rectangular slabs, due to a longer horizontal yield line in the middle in the rectangular slab, which has detrimental effect on the sectional ultimate bending moment. The numerical results show that the reinforcement ratio has little effect on the initial bending stiffness and yield‐line resistance of slabs for a given slab thickness and aspect ratio. The initial stiffness and yield‐line resistance increase as the slab thickness increases. For the same reinforcement ratio and slab thickness, a larger aspect ratio leads to a lower initial bending stiffness, yield‐line resistance, and stiffness in tensile membrane action stage, due to a longer yield line along which tensile membrane forces have a detrimental effect on the sectional bending moment.
Keywords:energy‐based  flat plate  load‐bearing capacity  membrane action  reinforced concrete slabs  yield line
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号