首页 | 本学科首页   官方微博 | 高级检索  
     


Atomic Disorders Induced by Silver and Magnesium Ion Migrations Favor High Thermoelectric Performance in α‐MgAgSb‐Based Materials
Authors:Dandan Li  Huaizhou Zhao  Shanming Li  Beipei Wei  Jing Shuai  Chenglong Shi  Xuekui Xi  Peijie Sun  Sheng Meng  Lin Gu  Zhifeng Ren  Xiaolong Chen
Affiliation:1. Institute of Physics, Chinese Academy of Sciences, Beijing, P. R. China;2. Department of Physics and TcSUH, University of Houston, Houston, TX, USA
Abstract:Thermoelectric devices can directly convert thermal energy to electricity or vice versa with the efficiency being determined by the materials’ dimensionless figure of merit (ZT). Since the revival of interests in the last decades, substantial achievements have been reached in search of high‐performance thermoelectric materials, especially in the high temperature regime. In the near‐room‐temperature regime, MgAgSb‐based materials are recently obtained with ZT ≈ 0.9 at 300 K and ≈1.4 at 525 K, as well as a record high energy conversion efficiency of 8.5%. However, the underlying mechanism responsible for the performance in this family of materials has been poorly understood. Here, based on structure refinements, scanning transmission electron microscopy (STEM), NMR experiments, and density function theory (DFT) calculations, unique silver and magnesium ion migrations in α‐MgAg0.97Sb0.99 are disclosed. It is revealed that the local atomic disorders induced by concurrent ion migrations are the major origin of the low thermal conductivity and play an important role in the good ZT in MgAgSb‐based materials.
Keywords:atomic disorders  high thermoelectric performances  ion migrations  low thermal conductivity  MgAgSb
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号